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L O N G W A V E  A P P R O X I M A T I O N  M O D E L  F O R  GAS S H E A R  F L O W  

IN A C H A N N E L  O F  V A R Y I N G  A R E A  

V . M .  Teshukov UDC 533.6.0114-517.958 

An approximate system of equations that describe unsteady flow of an inviscid non-heat- 
conducting gas in a narrow channel of varying area is derived. Generalized characteristics 
and hyperbolicity conditions are obtained for this system of equations. In connection with 
characteristics theory, the average Mach number and the flow criticality condition are 
introduced. Exact solutions that describe steady transonic channel flows are investigated. 

Plane-parallel and axisymmetric unsteady flows in a long channel of varying area are studied. It is 
assumed that the channel entrance flow parameters are nonuniformly distributed over the cross section. A 
mathematical model of longwave approximation that extends the well-known channel approximation equations 
[1, 2] to the case of inhomogeneous flows is developed. The characteristics of the integrodifferential equations 
governing the flow evolution axe studied using the method developed in [3, 4], and hyperbolicity conditions are 
obtained. A class of stationary solutions that describe inhomogeneous transonic flows in a channel of varying 
area is constructed. Exact solutions that model flow separation from the wall and formation of a return-flow 
zone are obtained. 

Steady varying-area flows of a polytropic gas and !sentropic flows have been investigated [5, 6] within 
the framework of a similar approximation. In the present paper, steady flows with a critical layer are analyzed 
using some methods of analysis developed in [5]. 

1. Longwave  A p p r o x i m a t i o n  Mode l .  We study plane-parallel flow of an inviscid gas in a long 
channel of varying area. Let X and Y be Cartesian plane coordinates, T time, and the equations Y = 0 
and Y = H o A ( X L o  1) define the lower and upper walls of the channel (H0 is the characteristic width of the 
channel and L0 is the characteristic length). In what follows, we assume that e = HoLo 1 << 1. 

We introduce the following dimensionless independent and dependent variables: 

x = L o l X ,  y = H o l y ,  t = LfflUoT, 

u = UolU, v = HolLoUolV,  p = Rff lR,  p = Ro-IUoZP. 
(l.la) 

Here R0 and U0 are the characteristic density and horizontal velocity, U, V, R, and P are the dimensional 
velocity components, density, and pressure, the small letters denote the corresponding dimensionless 
quantities. The gas-dynamic equations are represented in the dimensionless variables as 

ut -4- uuz -4- vu u + p-lp~: = 0, Pt + (up)z + (vp) u = 0, (1.1) 

~2(vt + uvz + vvy) + p-lpy = O, St + uSx + vS  u = O, p = p(p, S). 

The last equality defines the equation of state (S is the entropy). 
Longwave approximation equations are obtained when ~ --* 0 in (1.1). In the limit, the law of 

conservation of vertical momentum gives the equality py = 0, and, hence, p = p(x, t) .  This equality 
expresses the fact that the pressure distribution across the channel levels off much more rapidly than the 
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same distribution along the channel (because of the considerable difference in geometric scales). In the 
approximate description, the transverse pressure distribution levels off instantaneously. In this case, the 
transverse distributions of the gas entropy and density may not be uniform. Clearly, this approximation 
applies for smooth distributions, and modeling of flows with sharp gradients and jumps of parameters requires 
separate consideration. Integration of the continuity equation yields 

y 

v = -(p(p, s)) -1 / ( (p (p ,  s)), + (up(p, du, (1.2) 
o 

where the boundary condition v = 0 for y = 0 is used. 
The boundary condition on the upper wall of the channel v - A'(x)u = 0 with allowance for (1.2) is 

written as 
A(.) A(=) 

( / p(p,S)dY)t+ ( /  up(p,S)dy)z=O. (1.3) 
o o 

Equations (1.2) and (1.3) together with the equations 

ut+uu= +vuy+(p(p,S))-lp= =0, St+uSz+vSy=O (1.4) 

form a closed system of equations for determining u(z, y, t), S(z, y, t), p(z, t), and v(z, y, t). 
For further consideration, system (1.1) is conveniently transformed to the Eulerian-Lagrangian 

coordinates z',  t', and A (A E [0, 1]) using the relations 

z = z ;  t = t ' ,  y='~(z ' ,~, t ' ) ,  ~ t+u(z ,r  q)(=,~,0) = ~ 0 ( x , ~ ) .  

Solution of the above Cauchy problem gives the evolution of the contact characteristics of system 
(1.1), each of which is defined by the equation y = @(z, A, t) with fixed Lagrangian variable )t. The relation 
y = ~0(z, A) gives the initial position of the contact characteristic A = coast. The function @0(z, A) is chosen 
so that ~0(z, 0) = 0 and (I)0(x, 1) = A(z) [in particular, one can set (I)0(z, A) = AA(x)]. In the new variables 
(below, the prime is dropped), the gas-dynamic equations take the form 

p(ut + uu=) +p= - @,(~;])Px = 0, Ht + (uH), = 0, (1.5) 

g2 p(vt + ttVz) q- ~-~lpx : O, St -1- ttSz = O. 

Here the sought function H = P~x is introduced. The boundary conditions on the channel walls are equivalent 
to the relations 

1 1 

/ (p(p ,S)) - l  n dA = / ~x dA = A(x). (1.6) (I)(z,0, t) 
0 0 

System (1.5) and (1.6) supplemented by the equation 

(I)t + u(I)z = v ( 1 . 7 )  

forms the exact model of channel gas flow. In the longwave approximation model, px = 0, i.e., p = p(z, t). 
Equations (1.5) for r = 0 reduce to the following integrodifferential system: 

1 1 

~.-S, dA-A'(z) =0, Ht+(uH),=O, St+uS,=O (1.8) 
o o 

0 0 1 1 H 
, ,  = c , s  = = 7 -  / 

o o 

Here c is the speed of sound. 
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Equations (1.8) form a closed system for determining the functions u(x, A, t), H ( x ,  A, t), and S ( x ,  A, t). 
In this case, the nonlocal dependence of p on H and S is given by (1.6). If a solution of system (1.8) is 
obtained, the vertical component  of the velocity vector is de termined from (1.7) and ~(z ,  A, t) is given by the 
equation 

l 

r = [(p(p, S))-IH 
o 

For a polytropic gas [p = pl/Vb(S)],  Eq. (1.6) is solved explicitly for p: 

1 

o 

Note that  for the class of particular solutions characterized by the equalities u~ = 0, S~ = 0, and 
Hx = 0, system (1.8) reduces to the well-known channel-approximation equations: 

p(ut  + u u , )  + p~ = O, (pa) t  + ( u p a ) x  = O, St + uSz  = O. (1.9) 

In this case, Y = ~ = AA(x). Hence, system (1.8) [or (1.2)-(1.4)] is a generalization of the well-known channel 
approximation model  to the case of inhomogeneous flows of varying area. 

The nonzero component  of the curl of the velocity in the chosen scales is represented as w = Vx  - Ur  = 
UoHol(e2vz - uy). 

In the approximate theory, w = -UoHoluv, and, hence, flows whose velocities u do not depend on A 

are irrotational [uy = u~(q~x) - I  = 0], and the general flows governed by Eqs. (1.8) are rotational. 
2. H y p e r b o l i c i t y  o f  t h e  Bas ic  S y s t e m  of  E q u a t i o n s .  System (1.8) describes processes with a 

finite velocity of per turbat ion propagation along the channel axis. This velocity is found using special integral 
relations that  take into account flow inhomogeneity. The  exact description of perturbat ion propagation is 
based on the definitions of the characteristics of the system of equations with operator coefficients formulated 
in [3]. 

We represent Eqs. (1.8) in the form 

Ut + B ( U , )  = f, (2.1) 

where U(x ,A, t )  = (u, H , S )  t [( . . .) t  denotes transposition]. The  action of the operator B on any smooth 
function ~o = (%o1,%o2,%o3) t is given by the formula 

B(q0) = H~ol + u~02 0 p 0 . (2.2) 

uqo3 

In accordance with [3, 4], the differential equation d z / d t  = k ( z ,  t) defines the characteristic curve 
z = z ( t )  of system (1.8) if the eigenvalue problem 

(F, B(qo)) = k(F, ~o) (2.3) 

has a nontrivial solution. Here k is an eigenvalue, F = (Fa, F2, F3) is the sought eigenvector functional, (F, ~o) 
is the action of the functional F on the smooth trial function qa. Here F is treated as a liner functional that 
acts on functions of the variable ,X. In the case considered, the quantities entering (2.3) bear a parametric 
relationship to x and t. The  equality 

(F, Ut + B(U~)) = (F, Ut + k U , )  = (F , f )  (2.4) 

is called the characteristic relation [in (2.4) the vector U is differentiated only in the direction d x / d t  = /," 
in the x , t  plane]. System (2.1) is a hyperbolic system of equations if all k a satisfying (2.3) are real and the 
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set of corresponding eigenfunctionals {F a } is complete in the following sense: if the function ~0 is sufficiently 
smooth, it follows from (F a, ~o) = 0 that  ~o = 0. Then the characteristic relations (2.4) are equivalent to the 
initial system (2.1). 

We obtain the hyperbolicity condition for system (1.8) in the case where u is a monotonic function of 
A (uA r 0). Since the trial functions ~1, ~o2, and ~o3 are independent,  Eq. (2.3) is equivalent to the following 
equalities: 

1 

(FI, (u - k)qo,) + (F2, HqOl) = 0, (F2, (u - k)qo2) + a - '  / ~02p -1 dr(F1, p - l )  0, 
J0 (2.5) 

1 

(F3, (u - })qo3) - a - '  / psp-ZH~o3 dv(F1, p-l) __ 0. 
0 

In accordance with (2.5), the action of the functional F2 on any trial function Ib is uniquely determined 
if the functional FI is known: 

(F2, r  = - ( F , ,  (u - k ) H - ' r  (2.6) 

Here r is a trial function and H r 0. The functional F~, as follows from (2.5) and (2.6), must satisfy the 
equation 

1 

(Ft ,  (u - k)2H-lqo2) - a-' / ~o2p -I dr(F,, p-X) = 0. (2.7) 
0 

For k r u(x, A, t), where A E [0, 1], the action of the functional F1 on the trial function ~b can be 
defined by 

1 

(F,, r = a- '  f Hp-'  (u - k)-2r dr(F1, p-' ). (2.8) 
0 

Substituting ~ = p - l ,  we obtain the existence condition for a nontrivial solution of Eq. (2.8), i.e., the following 
equation for determining the characteristic velocity k: 

1 1 

xfk)= p (u-klS 
0 0 

As a result, for each root ki of Eq. (2.9) we obtain the eigenfunctional F~, whose action on an 
arbitrary function r is defined by formula (2.8) for (F~,p -1) = 1 [this equality follows from (2.9)]. 
Analysis of the characteristic equation (2.9) shows that  there are two characteristic roots on the real axis: 
k = kl > maxu(x,,k,t) = u 1 and k = ks < mJnu(x,,k,t) = uo. Indeed, x'(k) r 0 for k > ul and k < u0, 

X ( + ~ )  > 0, and x(k) ~ -oo for k ~ u0 and k ~ ul (for smooth dependences of H, p, and u on A). If the 
functions H, p, u, and c do not depend on ,k, Eq. (2.9) becomes the ordinary equation of sonic characteristics 
for system (1.9). Therefore, the characteristics that  correspond to the roots kl and k2 are analogs of sonic 
characteristics. In the general case, Eq. (2.9) can have complex roots. To formulate conditions that  guarantee 
the absence of complex roots for the given solution u, H, S, we examine the analytic continuation of the 
function X to the complex plane. Similar reasoning to that  in [4] provides the following result. Equation (2.9) 
has only real roots (k = kl and k = ks) if 

X+(u) # 0, Aargx+(u)/x-(u) = 0. (2.10) 

Here )~+(u) are the limiting values of the analytic function X(z) on the segment [u0, ul] from the upper and 
lower half-planes; Aarg f is the increment of the complex function f on the indicated segment. When the first 
component F~ of the eigenvector functional that corresponds to the characteristic root ki is determined, we 
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define the second component  F~ by formula (2.6) and F~ by the formula 

1 

i J [ PSP- 2 H~b ( F L  ,/, ) = ,~- ~ dit 
u - ki 

0 

[see (2.5)1. 
Analysis shows that  nontrivial solutions of Eq. (2.7) in the class of generalized functions can be found 

for an infinite set of eigenvalues k x = u(z,  A, t), where A E (0, 1) (a continuous spec t rum of characteristic 
velocities). Let 6(u - A) be the generalized Dirac delta function and 6~(v - A) its derivative. The  action of 
these functionals on an arbitrary function ~o is defined by the s tandard formulas 

(6(it - ~),~(it)) = ~(~), (6'(it - X),~(it)) = -~ ' (~ ) .  

Equation (2.7) holds if we set F1 xl = p(v)6'(v - A). Indeed, 

(Flxl,CPCit)) -1) = ( 6 ' ( i t -  ,~), X) = 0, 

( F t  1 , ( i t ( i t )  - u ( ) k ) ) 2 ( O ( i t ) ) - l ~ o 2 ( i t ) )  = (~t ( i t  _ ~ ) ,  ( . ( I t )  - -  t t ( . , ~ ) ) 2 p ~ o 2 ( v ) ( H ( i t ) )  - 1  ) : O. 

The second component  of the vector functional F2 xl = ux(A)p(A)(H(i t ) ) -16( i t -  A) is calculated by 
substituting the first component  Fx xl into formula (2.6), and the third component  F3 xl can be taken equal to 
zero. To construct one more solution of Eq. (2.7), we introduce the functional P'~, which acts on an arbitrary 
function ~(it) as follows: 

1 

f H(it) p(it)~(it) -p(~)~(~) (P~,~(it)) 
o p2(it) (u(it) : ~  ait. 

Here by the integral we mean the principal value. The functional pX satisfies the relation 

1 

~ 7 )  o p(It) " 

A solution of Eq. (2.7) for k = k~(=, t) = '4=, A, t) is sought in the form F~ = F? 2 = C(~)6( i t - ,~ )  + e~. 
It turns out that  it suffices to set C'(~) = ap(A) to satisfy this equation. 

As previously, the action of the second component  of the eigenvector functional F~ 2 is defined by 
formula (2.6): 

1 

(F~, ~(it))= - f  
~o( it ) dit 

0 P(it)(uCit) -- u(A))" 

It is easy to verify that  if the third component of the eigenvector functional F3 x2 is defined by the 
relation 

1 

(F3X2,qo( i t ) )=_fps( i t )  g(it)~o(it) 
o P ~ ( i t )  ~TbS:=~S) d~, 

the last equation of (2.5) also holds. 
Besides the vector functionals F M and F ~2 constructed above, F x3 = (0, 0, 8 ( i t -  A)) also satisfies Eqs. 

(2.5) for k ~ = u(x, ~, t). Here and below, for brevity, the arguments x and t in the notation for the sought 
functions are dropped. 

Acting on Eqs. (1.8) by the vector functionals, we obtain the following characteristic relations: 

p(u -- ki) 2 dv - p(u - ki) dv + 7 u : kii dv = a'(x) ,  
0 0 0 

p,~H(ut + uu:c) + pH(uat + uux~:) - pux(Ht + uHz) = 0, (2.11) 
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] H(v) p(.)(u,(~) + =(X)=.(v)) - p(X)(=,(X) + =(X)~(X)) 

0 

o " - ~ ; Y : ~ - ~  d,, + M(.)ps(~) s,(.) +, , (~)&( . )  
o P2(U)  ~ - - ~ ( A )  d u  A'(z), 

s,(~) + ~(~)s.(~) = o 

To complete the verification of the hyperbolicity conditions for system (1.8), we check the completeness 
of the resulting system of eigenfunctionals. Let (F i, ~o) = 0 (i = 1 and 2) and (F  xj, ~)  = 0 (j = 1, 2, and 3). 
We show that ~ = 0 if u, H,  and S satisfy (2.10). It follows from the equation (F a3, ~o) = 0 that  ~3 = 0, and 
the equation (F xl, ~0) = 0 gives the relation 

H ~ (p~l) - p u x ~ 2  = 0. (2.12) 

With allowance for (2.12), the equation (F x2, ~)  = 0 is written as 

1 
[ H(~) 0 p(~)~,l(v) - p(~)~,i(~) 

~p~oi - : p 2 ( . ) ~ . ( . )  0 .  ~(~) - - ~  d .  = 0. (2.13) 
0 

Direct subst i tut ion of the function pto0i = (u - ki) -~ into (2.13) shows that  it is a solution of this 
equation. Instead of the sought function tOl we introduce the new unknown 

2 

W = P~Pl --  E otiPCPOi' (2.14) 
i=1 

choosing the coefficients a i (x , t )  from the conditions w = 0 for A = 0 and A = 1. Integrating (2.13) by 
parts and passing to integration with respect to u, we obtain the following singular integral equation for 
determining w: 

[ H(1) H(0)  
w~o" -I- p2(1)uA(1)(tt(1) _ u(,~)) --  p2(O)u)t(O)(u(O) - -  u()t)) 

0. (2.1S) j & Vp2(~)=~(~)j =~(~)(=_ u(~))/ j & Vp~(~)=~(~)/ =~(~)(= _ =(~))/ 
u 0 u0 

Let the coefficients of the singular integral equation (2.15) satisfy the HSlder condition for the variable 
u. According to the general theory of singular integral equations [7], Eq. (2.15) is uniquely solvable in the 
class of functions that  satisfy the HSlder condition in the interval (u0, ul)  and are bounded at the ends of 
the interval if the symbol of the equation does not degenerate and the index of the equation is equal to zero. 
These conditions reduce to (2.10), and, therefore, from (2.15) it follows that  w = 0. Hence, 

2 

P ~ I  = E OtiP~Oi" (2.16) 
i=1 

With allowance for (2.12), the equations (F i, ~) = 0 are written as 

1 

u v p  2 0u \ u  ----~17 du = 0, i = 1, 2. 
o 

By virtue of (2.9), 

1 / - -  
o 

= 0  

(2.17) 

(2.1s/ 
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for i ~ j .  Substituting (2.16) into (2.17) and taking into account relations (2.18) yield equations from which 
it follows that ai = 0. Hence, ~ol = 0, ~2 = 0, and ~3 = 0. 

As a result, it is established that system (1.8) is hyperbolic if the solution (u, H, S) satisfies conditions 
(2.10) and u;~ ~ 0. 

For nonmonotonic velocity profiles, one can obtain the hyperbolicity conditions for Eqs. (1.8) by 
changing somewhat the reasoning in [8], where a similar formulation of the problem was studied. Apparently, 
violation of the hyperbolicity conditions leads to incorrectness of the Cauchy problem for Eqs. (1.8). This 
fact can be established for the linearized system of equations with "frozen" coefficients. Indeed, if we consider 
linearization of Eqs. (1.8) on the vector U0 = (u(xo, A, to), H(xo, A, to), S(zo, A, to)), where U = (u, H, S) 
is a solution of system (1.8) (a linearized system with "frozen" coefficients of x and t), the homogeneous 
equations admit solutions of the form U = V0(A)/-n e il(z-kO, where l is a real parameter,  n > 0, and k 
is a complex root (Im k > 0) of Eq. (2.9) for U = U0. In the limit I ~ oo, we have U(x,  A, 0) ~ 0, but 
U(x,  ~, t) does not tend to zero for t > 0. This indicates the absence of a continuous dependence on the initial 
data. Therefore, with violation of the hyperbolicity conditions, one might expect loss of flow stability in the 
longwave approximation. 

3. S t e a d y  So lu t ions .  For consideration of steady solutions, we introduce the average Mach number 

' 1/2 f  -1/2 f f  M (3.1) Q 

If the flow parameters do not depend on A (homogeneous flow), it is obvious that M = lulc -1. If the flow is 
inhomogeneous and ]u(xo, A)I > c(xo, A) for x = x0, it is not difficult to see that  M > 1. Similarly, M < 1 if 
]u(xo, A)] < c(xo, A). Hence, the value M -- 1 can be reached at sections x = const at which lu] - c changes 
sign. The equality M(z0) = 1 is equivalent to satisfaction of the characteristic equation for k = 0. This means 
that at the point x0 one of the perturbation propagation velocities vanishes. 

Since the choice of the Lagrangian variable A is ambiguous , in the steady case it is convenient to set 
= r where r is the stream function (r = pu and r = -pv). The difference from the previous choice is 

insignificant: at the sections x = const, A = r changes from 0 to Q, where Q is a constant gas flow rate in the 
jet. In accordance with this, the limits of integration in (3.1) and similar formulas are changed. In the steady 
case, Eqs. (1.8) integrate to: 

S = S(A), 2 - Iu  2 + i(p,S(A)) = I(A), ug  = 1. (3.2) 

Here S and I are arbitrary functions and i(p, S) is the specific gas enthalpy. Equations (3.2) are solvable for 
u and H: 

u = +r  - i(p, S(A))), g = :t=(2(I(A) - i(p, S(A))) )  -1 /2 .  (3.3) 

Let the entrance velocity u be positive at x = 0. Then, the plus sign is fixed in (3.3). Substituting (3.3) 
into (1.6) yields an equation that  defines the pressure p(x): 

Q 

K ( p )  = o P(P, S()0)~ /2( I (~)  - i(p, S ( I ) ) )  = A(~). (3.4) 

The derivatives of the function K(p) are of the form 

Q 

K'(p) = (1 - M s) / Hp-~u -2 e~, 
0 (3.5) 

Q Q Q 
f r, pdA f rrpdA f r 3 dA ( 1) 

K"(p) = ( 2 ( ; -  ~))'/~ + 3 ( 2 ( ? - ~ / ~  + 3 (2(i =:~p/~ ~ = ~ 
0 0 0 

It follows from the above formulas that the qualitative behavior of inhomogeneous flows is similar to 

18 



the behavior of homogeneous flows. For a supersonic flow (M > 1) in an expanding channel [A'(x) > 0l, the 
pressure decreases and the velocity u increases along each streamline. For a subsonic flow (M < 1), p and u 
behave similarly in a converging channel [At(x) < 0]. We assume that  the equations of state of the gas satisfy 
the monotonicity and convexity conditions: rp(p, S) < 0 and rpp(p, S) > 0. In the case of a homogeneous flow 
(the solution u, H, and S does not depend on A), these conditions give the inequality K"(pc) > 0 at the point 
p = pc determined by the condition K*(pc) = 0. From this property it follows that K(p) reaches a minimum 
for p = pc and changes monotonically for p ~ pc. In the case of inhomogeneous flows, the nonnegativeness 
condition for the last two terms in the second relation of (3.5) and the condition K~(pe) = 0 can be represented 
a s  

O 
f (~p + r2y2)~y 3 d~ >1 o; (3.6a) 
0 

1 

/(rp + r2 y2)/ d~ = O, (3.6b) 
0 

where f = (2(I - i))-~/2. In the general case, inequality (3.6a) is not a consequence of equality (3.6b), but 
for the equation of state 

r = b(S)~(p) (3.7) 

(b > 0, qo ~ < 0, and ~" > 0) inequality (3.6a) follows from (3.6b). In this case, inequality (3.6a) reduces to the 
Cauchy inequality 

q q Q 

( f  b2f3d~)2<~ f bafSdA f bf d~. 
o o o 

We distinguish a class of gas equations of state for which the function K(p) is convex for all values 
of p. These equations of state are characterized by the inequality 

4 ~  - 3r~ > o. (3.s) 

For these functions r(p,  S) the integrand in the second formula of (3.5) is positive due to the inequality 
ab > - a  2 --~4-1b 2, where a = rs/2(2(I - i))-5/4 and b = rpr-1/2(2(I - i))-1/4. Hereinafter we assume that 

the equations of state of the gas are of the form (3.7) or satisfy the condition (3.8). Then, there is a r;ngle 
value p = Pc for which the function K(p) reaches a minimum and K(p) varies monotonically for p ~ pc. 

We consider a steady gas flow through a given channel. At the entrance at x = 0, we assume u = 
uo(y) > 0, p = p0 = const > 0 (p0 is the average pressure at the entrance), and p = po(y) > 0. At x = 0, 
these conditions determine 

y A(0) 

_fP~176 Q = f po(y')uo(y')dy'. (3.9) r 
o o 

The function So(y) is obtained from the equation P(Po, So(y)) = po(y) [it is assumed that ps(p, S) > 0]. In 
accordance with (3.1), the entrance flow is subsonic (M < 1) if 

A(0) A(0) 

0 P~176 > 2 , po(~)c (p0, p(~)) 

or supersonic when the inverse inequality holds. Solving the first equation of (3.9) for y = y0(~b), we find 
I(~) = I(A) = 2-1u02(Y0(V)) + i(p0, SO(y0(~))). This allows us to define the function K(p) by formula (:3.4) 
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From the equation 

q 
r - c - 2 ( p ,  s ( f ) )  + ( 2 ( I ( f )  - i(p, s ( f ) ) ) ) - '  K'(p) df  O, (3.10) J 

where S ( f )  = S0(g0(f)),  we find the critical pressure p = p,. In this case pc < p0 if M < 1 at the entrance and 
pc > p0 if M > l at the entrance. Indeed, the condition M < 1 is equivalent to the inequality K~(po) > 0, but 
as p ---, 0, the integrand in (3.10) becomes negative [c(p, S ( f ) )  ---, 0 for p --+ 0]. Therefore, K'(p) changes sign 
on the interval (0,p0) and 0 < pc < p0- We note that relations (3.3) are defined for p > p0 = max P ( f ) ,  where 

P ( f )  is a root of the equation I ( f )  = i(P(f), S(f)). If at the channel entrance M > 1, we have K'(p0) < 0, 
but K'(p) ~ +oo for p --* p0. Therefore, K(p) changes sign on the interval (po,p ~ and p0 < pc < pO. The 
inequality A(z) >1 K(pc) = min K(p) must be satisfied for the existence of continuous steady flow; otherwise, 

P 

Eq. (3.4) has no solutions at certain x. 
From the properties of the function K(p) it follows that in supersonic flow regions, p < pc and in 

subsonic regions, p > pr Therefore, the radicand in (3.3) (p = p0) can vanish only in a subsonic region of an 
expanding portion of the channel [A(z) takes the value K(p~ If the function A(x) satisfies the inequality 
If(pr <~ A(z) everywhere, from Eq. (3.4) one obtains the pressure distribution p = p(z) and then u(A, x) and 
H(A, x) using formulas (3.3). 

Note that at points zi at which the equality p(xi) = pc holds, branching of the solution is possible: if 
A(z) > K(pc) for x > xi, the solution p = p(z) of Eq. (3.4) can be continued to the region z > zi either by 
a subsonic branch (p > pc) or by a supersonic branch (p < pc). Thus, we can also construct transonic flows. 
including flow through a nozzle with a throat of width K(pc) with subsonic flow in the convergent portion 
and supersonic flow in the divergent portion. If for a chosen steady flow in a divergent subsonic portion of the 
channel, the equality A(z) = K(p ~ is reached with increase in z, solutions of the form (3.3) cease to exist. 
In a supersonic portion of the channel, at tainment of the equality A(z) = K(p ~ does not prevent further 
continuation of solution (3.3), because in this portion the pressure decreases with expansion of the channel 
(p < p, < p0). 

4. R e t u r n  Flows.  The stagnation point of the flow can appear, in particular, in a completely subsonic 
gas flow through an asymmetric expanding channel. Let the function A(z), which defines the shape of the 
upper wall of the channel, satisfy the inequality A(x) > K(pr for the subsonic flow considered. In addition. 
let the inequality A(z) < K(p ~ be satisfied for z < zl and the equality A(zl) = K(p ~ hold at the point 
x = zl. For definiteness, we assume that u > G for z < xl and, at x = zl ,  the function u becomes zero for 
the first time on the upper wall of the channel. Since for subsonic flow, K~(p) > 0, solutions of the form (3.3) 
cease to exist for x > xl if the channel continues to expand [A(z) > A(zt)]. But for z > zt ,  we can construct 
a steady solution of another structure. For this solution, a dividing streamline A1B1 issues from the point 
A1, where u = 0 (Fig. 1). Particles that enter the left end of the channel move below this streamline, and 
turning of the streamlines - -  the trajectories of the particles entering the right end of the channel - -  occurs 
above the line. This solution describes flow with separation of the main flow from the channel wall. Let the 
streamline A1BI be given by the equation y = r/(z) (z > xl). 

We examine the cross section z = const, x > zl.  Since, in the main-flow and return-flow regions. 
relations of the form (3.3) are satisfied for the appropriate choice of the radical sign, for the main-flow region 
we have 

q 
dA I "  

= / 
p(p, S(),)) X/2(I(),) i(p,S(A)))" 

0 

In the region between A1B1 and the upper wall of the channel, the flow is described by formula~ 
(3.3), where one must replace /(A) by II(A), S(A) by SI(A), i(p,S) by il(p, Sx), and p(p,S) by pl(p, Sl) 
(the gas entering the channel from the right generally has a different equation of state and different flox~ 
"'constants"). The stagnation points of the flow have coordinates (x, A(p(z)), where A(p) is a solution of tho 
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equation 11 (A(p)) - il (p, ,5'1 (A)) = 0. 
On the segment EC, where A varies from A(p0) = Q to A(p), the plus sign is chosen in (3.3). On the 

segment CD, where A varies from A(p) to Q, the minus sign is chosen. The thickness of the layer occupied by 
the return flow ~ = {(z) is written in the form 

~b,) Q 

~(z )=~(p (x ) )=  p I ~ / 2 ( I i - i l )  ;~(,) p1~/2(II - i l )"  

The equality if(p) + ((p) = A(x) defines the pressure distribution along the channel at x > Xl if I(A), 
I~(A), S(A), and SI(A) are known. If the function p = p(x) is known, the channel flow for z > Xl is described 
by relations of the form (3.3), as noted above. 

For consideration of particular examples, for simplicity we set SI(A) = $1 = const. Assuming that the 
function I1 (A) is monotonic, in the integral representing ((p) we convert to the integration variable/~ = Ix (A). 
We introduce the funct ion w(u)  = (I~(A)) - I .  Then the equat ion  ( (p)  + if(p) = A(x) is rewri t ten as 

il(p,sl) 
2 --J w(#)dp = A(x) -i f(p).  

II(Q) Pl(P, $1)~/2(p - il(p, $1)) 

The return=flow region is completely specified by defining the equations of state, the function w(/~), 
and the constant 5'1. We examine the simple case w(/J) = - N  = const. In this case, the previous equation is 
simplified: 

~(p) = 2N(p(p, S1))-I~/2(II(Q) - il(p, $1)) = A(x) - if(p). (4.1) 

Here II(Q) = il(p ~ S1) by virtue of the fact that u vanishes for p = p0. For values of p close to p0, we have 
~(p) +~ (p )  < 0. Therefore, the function p(x), which decreases monotonically in a vicinity of the point x = xl, 
is determined from Eq. (4.1) for A'(x) > 0. In the indicated vicinity, the thickness of the layer occupied by 
the return flow ~(p(x)) increases and the thickness of the layer occupied by the main flow decreases. In an 
expanding channel, the pressure continues to decrease as long as ~(p) + ~(p)  < 0. Note that at the point xl 
the pressure reaches a maximum value p = p0. 

We consider results of numerical simulation of inhomogeneous polytropic-gas flows through a nozzle 
based on the approximate model. 

We assume that in relations that define conversion to dimensionless variables, U = Co, where Co is the 
entrance velocity of sound at x = 0 and y = 0, H0 is the initial width of the channel entrance, and R0 is the 
gas density at x = 0 and y = 0. Then, the dimensionless flow parameters for x = y = 0 satisfy the relations 
p = .~-I, p = 1, and A(0) = 1, where 3, is the polytropic index. The equation of state of the gas is written as 
p = 7-1a(S)p 7 [a(S) = 1 for x = y = 0]. The channel entrance flow is characterized by a constant pressure. 
a constant horizontal velocity component, and a temperature profile linear in y: 

= 40 = const, p = (1 + ~u0y) -1, a (S)  = (1 + ~u0y) ~, p = ~-~ 
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(u0 > 0 and/3 > 0). Then,  for x = 0, we have 

r 1 6 2  a ( S ( r  #re, Q = r  

These relations define I ( r  and i(p, S(~b)): 

I = 2-1u 2 + (7 - 1) -leflr i = (Tp)('r-O/'%M'/(7 - 1). 

In accordance with the previous formulas, u(p, r  and y(p, r  for x > 0 are given by the equalities 

u (p , r  = Cu02 + 2(7 - 1)-le#'k(1 -(Tp)( '~-l)/ ' r) ,  

y(p, ~b) = 2/~-l(Tp)-l/'t(e/~b - 1)(u(p, r  -F u(p, 0)) -1, 

and the pressure distribution is found from the equation y(p, Q) = A(x) .  The entrance flow is subsonic (M < 1) 

if u 0 <  4-1 (fl + ~ ) ,  otherwise it is supersonic (M > 1). 

Figure 2 shows streamlines, and Fig. 3a--c shows, respectively, the velocity profiles u at the entrance, 
throat (M = 1), and exit of the nozzle for transonic steady flow with a linear pressure distribution p = 
7-x(1 - bx) along the channel [7 = 1.4, u0 = 1, fl = 3, and b = (16)-1]. The tempera ture  inhomogeneity of 
the subsonic entrance flow leads to supersonic shear flow at the nozzle exit. 

Figure 1 shows the streamline pat tern for subsonic flow with the same channel entrance flow parameters 
for the following pressure distr ibution along the channel: 

p = (5/7)((21/20) r/2 - ((21/20) r/2 - 1)(z/5 - 1)4). 

In an expanding channel at x < 5, the subsonic flow decelerates, the horizontal velocity profile becomes 
inhomogeneous along the vertical, and, at x = 5, a stagnation point of the flow occurs at the upper wall. For 
z > 5, the steady flow continues as flow with separation of the main flow from the wall and formation of a 
return-flow region. It is assumed that  in the return-flow region, the gas is described by the same equation of 
state and its entropy is constant;  its value coincides with S(Q)  (the value of S in the main flow on the upper 
streamline). The  return-region flow is characterized by the additional relation w(/~) = - N  = -0 .1 ,  which 
corresponds to the linear velocity profile u(y) on the inflow portion at the right end of the channel z = 11. 
Expansion of the return-flow region leads to a decrease in the thickness of the region occupied by the main 
flow and an increase in the velocity of the main flow. 

In summary, a longwave approximation model is constructed that  describes unsteady inhomogeneous 
gas flows in a long channel of varying area. It is shown that  the system of equations of motion is hyperbolic 
under certain conditions. The  general properties of steady gas flows with equations of state that  satisfy the 
monotonicity and convexity conditions and the additional condition (3.7) or (3.8) are studied. 

In considering more general equations of state that  satisfy the monotonicity and convexity conditions. 
one might expect changes in the qualitative properties of steady flows [the presence of several maxima and 
minima of the function K(p)]. 

R e m a r k .  In the case of an. axisymmetric channel flow [0 ~< r <~ B(x)], the equations of the sam,' 
approximation in Eulerian variables are of the form 

ut + uu ,  + WUr + p--lpz = O, Pr = 0 ,  Pt + (uP)z + r--l(prW)r = O, St + U S ,  + wSr = 0. (-1.2) 

lh:re z is ~he dimensionless coordinate along the channel axis, r is the dimensionless radial coordinau_' iii 
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a cylindrical coordinate system, and u and w are the corresponding velocity components [the dimensionless 
variables are introduced in the same manner as in (1.1a)]. It is easy to see that after the change of variables 
y = 2-1r 2, v = rw, and A(z) = 2-1B2(z), Eqs. (4.2) become (1.1) at ~ = 0, and the boundary condition on 
the channel wall becomes (1.3). Therefore, all the results are also valid for an axisymmetric flow, and exact 
solutions are obtained from solutions of the plane problem by substitution of variables. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 94-01- 
01210). 
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